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ABSTRACT

Radiotherapy  wedges  constitute  an  important  group  within  the 
generic  classification  of  so-called  Beam  Modification  Devices  
(BMD). Wedges are subdivided into Static,  Dynamic, and Omni  
Wedges  sug-groups.  The standard  static  wedge attenuates  the  
beam progressively, in such a way that the dose delivery is higher  
at the thin side, and lower at the broader side. The slope of the 
inferior surface has the geometry of the hypotenuse of a triangle,  
formed  by  the  lateral  wall  of  the  wedge.  Conformal/Standard 
radiotherapy wedges [refs 3-7,Casesnoves 2005] present several  
bioengineering-industrial  design  difficulties  to  obtain  an  optimal  
beam/beamlets-IMRT upper-surface radiation distribution,avoiding 
that them could emerge undesirably from lateral walls instead the  
lower  wedge  plane.We calculated  the  improved  exact  beamlet  
limit-angle mathematical method for a standard/conformal wedge 
filter  design.It  was  developed  with  basic  mathematical  
algorithms,geometrical  design,and  Numerical  Simulations  linked 
to this mathematical formulation.All that was done using the AAA 
algorithm  integral  attenuation  exponential  factor  [AEF],which 
modulates  the  convolution  kernel  of  the  integral  dose  
delivery.Results comprise the geometrical design of the conformal  
wedge,showed  in  several  sketches,and  simulations  with  
appropriate  software.  In  addition,a  series  of  geometrical  
formulas/tables  for  the  beamlets  limits,trigonometric  AEF 
background,and mathematical formulation with the simulations of 
the AEF for a 2-steps conformal wedge are obtained.
Keywords:Dose,Attenuation  Exponential  Factor  (AEF) 
Simulations, Nonlinear Optimization. 

1.-INTRODUCTION

Wedge filters (WF) constitute a common medical device used in 
Radiation  Therapy,Inverse/Forward  Treatment  Planning 
Optimization  (TPO),  to  conform  tumor  shape during radiation 
delivery.They belong to the generic group of Beam Modification 
Devices (BMD) [3,4].The WF function is to attenuate the radiation 
beam  in  increasing  magnitude,usually along  the  transversal 
direction  to  the  photon-beam.  As  a  result,  the  dose  delivery 
magnitude forms a curved distribution in that transversal direction 
for each radiation-depth value within the photon dose-deposition 
region.  Classical  wedges geometry have a straight  sloping face 
corresponding to the hypothenuse of the triangle defined by the 
lateral  sides. The  clinical  problem  in  TPO is,  in  occasions,  to 
optimize the dose using WF, but the shape of the WF not always 
conforms  the  necessary  geometrical  conditions  for  the  optimal 
tumor  radiation.  In  this  paper  we  present  a  Mathematical-
Computational Model/Design for a Conformal Wedge Filter1, (CWF
) that has a sloping geometry divided into several non-continuous 
steps. The dose distribution in these types of wedges changes its 
shape  for  a  more  conformal  radiation  distribution,  if  the  tumor 
presents  irregular  geometry/contour,  rather  non-spherical.Since 
the  manufacturing/engineering  design  for  these  devices  is 
simple/understandable,  we  focus  the  paper  on  the 
mathematical/geometrical/modeling  formulation  to  carry  out  the 
design  with  engineering  precision,  obtain  an  optimal  radiation 
dose,  and  implement  the  algorithm  into  the  planning  system 
software.  It  was  shown  mathematically  the  exact  Limit  angle 
method for rectangular collimators windows (square window is a 
particular  case  from  this  one),  and  optimal  geometrical  curves 

1 The Conformal Radiotherapy Wedge was mathematically/physically designed by F  
Casesnoves in July 2005,Madrid City.Computational/Numerical  Simulations were  
carried out at Denver,October 2012.Patent in Pending Process.In references, new  
Radiation Medical Physics improvements in conformal  wedge design.

(ellipses) within the exact LA polygon at superior/inferior wedge 
surfaces/planes.  Previously,  the  classical  Ulmer  and  Harder 
approximation  for  wedge-path  of  the beam is sharply explained 
with geometrical and algebraic proofs; the intention is to show the 
precision evolution towards a more accurate formula, starting from 
this initial good approximation. It was developed a mathematical 
formula  to  avoid  non-symmetrical/irregular  beam  attenuation 
created by the alloy steps,  that is, to sort  the so-called double-
attenuation  (Fig,10).Additionally,  we  show  computational 
simulations/graphics  of  the  Attenuation  Exponential  Factor 
(AEF,Equation(8))  to  be  compared  with  classical  wedge  filters. 
The aim of this Technical Paper is, primarily, on the mathematical 
formulation that could be used to design/manufacture a conformal 
wedge  model.  The second part  is related to simulations of  the 
AEF distribution to prove, in theory, that a conformal wedge gets 
more  precise  dose  distribution  when  the  tumor  contour  is  not 
spherical, which is the frequent clinical case.

2.-THE AAA ALGORITHM. MATHEMATICAL  
FORMULATION

The  Analytic  Anisotropic  Algorithm,  AAA,  is  a  well-known  and 
extensively used Superposition-Convolution Model in RT. AAA is is 
evolved from an initial Integral Superposition Convolution Model, 
whose  parameters  were  optimized  using  large  Monte  Carlo 
experimental  data  in  water.  The  starting  Physical  Equation  to 
develop the model  [31-34]  was a Yukawa Kernel  based on the 
formulation structure of the classical Yukawa Gaussian Potential 
for Electromagnetism, as follows, 

Equation (1)

where   Dp (r,z) the absorbed dose, normalized to one photon, r is 
the radial coordinate 

Eq (2)

in the transverse plane at depth z. The characteristic function I(z) 
denotes the area integral of the dose over the transverse plane of 
the pencil beam at depth z, normalized to one photon, and  

Eq (3)

is the mean square radial displacement of the profile at depth z. 
Next,  a  mathematical  development  based  also  in  experimental 
data and Fourier Transform, was carried out [31-34], to transform 
the initial  formula on a triple sum of  Gaussians (Superposition) 
from  the  initial  simple  Gaussian,  and  optimize  the  coefficients 
according  to  photon  beam  experimental  data.  As  a  result,  the 
Pencil  Model  Dose at  a depth z and into an almost  differential 
cylinder (Triple Gaussian Pencil Beam) whose diameter is 2r is,
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Eq (4) 

The constants here are normalized in such a way that 

Eq (5)

all  the  parameters  are  tabulated  [31-34].  The derivation  of  the 
coefficient ck with the help of the Fourier transform, have already 
been described in  the  papers  [31-32].  Tabulations  of  I(z),σk(z), 
and  ck  , based  on  Monte  Carlo  calculations  of  photon  pencil 
beams for Co-60 gamma radiation and bremsstrahlung from 6 to 
18 MV, have already been published [31-32]. This triple-Gaussian 
representation of the pencil beam has been chosen because its 
convolution with the photon flux distribution  Ф (x,y,z)  at depth z 
can  be  analytically  performed  in  many  practical  cases.  An 
important contribution to the saving of computer time and storage 
space  is  thereby  achieved,  because  numerical  convolutions  or 
applications  of  look-up  tables  from  their  fitting  formulas  are 
partially  avoided.  The  analytical  form  of  the  resulting  dose 
distributions may also offer other, yet unknown, applications. The 
triple-Gaussian pencil beam approach can be applied to radiation 
beam  profiles  that  represent  rectangular  satellite  blocks  and 
wedge filters, as it is the case of this paper. The derivation of the 
coefficients ck with the help of the Fourier transform, have already 
been described in  the papers  [32-34].  The term 'Superposition' 
comes from the sum of three Gaussians into the integral. The term 
'Convolution' comes from the mathematical transformation carried 
out into the Dose-Deposition Kernel at the Integral. With this Triple 
Gaussian  Dp (r,z), a  Kernel  K  (x,y,u,v)  was  constructed  to 
implement the dose term into the integral expression for the initial 
Superposition-Convolution Model in water, and then, the integral 
dose results in general as follows,

Eq (6)

where I(z) is the area integral of the absorbed dose over a plane 
perpendicular  to  the  pencil  beam  axis  at  depth  z  per  incident 
photon [33], Φ is the photon fluence distribution of the beam per 
unit of intensity, and K is the kernel expression corresponding to 
the PBM, which is called the PB dose kernel, and describes the 
spatial  distribution  of  the  absorbed  energy.  This  kernel  could 
perfectly include  any other PBM, for example the classic  Anesjö 
model [1] or others. Now we focus on the aim of this research. The 
complete  Triple  Gaussian  Pencil  beam  Model  for  one  IMRT 
beamlet  in  water  [Ref  2],  when  using  wedges  of  angle  α and 
taking into account the Collimator Divergence Angle (usually very 
small), θ then reads [8],

Eq (7) [erratum, limits of integral -a',a',-b',b']

where x1', y1', z', u1', u2' , are the bixel dose  coordinates [Ref (2)]
This  is  the  formulation  of  the  AAA  algorithm  in  water.  For 
inhomogeneous tissues, larger formulation that is not used in this 
contribution  is  applied.  The  AAA  algorithm  has  evolutioned 
significantly from the initial model in water. A number of correction 
factors  have been introduced to  implement  it  into  the Planning 
System (usually Eclipse, Varian). The determinations of algorithms 

for  inhomogeneous  tissue  formulation  correspond  to  next 
publications. However, it is obliged to note that in human tissue 
the precise dose,  with the AAA model,  is  a sum of  three main 
integral factors [ref], namely, primary photons, extra-focal photons, 
and contaminating  electrons.  In  addition,  modern fitting of  AAA 
model uses a summatory of four Gaussians instead three [ref 29.1
].  Once  these  considerations/updates  are  explained,  we  step 
towards  the  mathematical  model  construction  for  the  specific 
conformal wedge considering only at this stage primary photons in 
water.

3.-GEOMETRICAL-TRIGONOMETRICAL 
DEMONSTRATION OF CLASSICAL ATENUATION 

EXPONENTIAL FACTOR 2D APPROXIMATION

Previously to determine the wedge/conformal wedge algorithm(s), 
the complete geometrical proof of the AEF approximation of Ulmer 
and Harder, [7], is proven. This good approximation was intended 
to obtain an analytical solution for Eq [9], which is an advantage 
for software dose delivery and running/planning-time calculations 
both numerical and analytic.  The inconvenient of  this method is 
that the variation of path through the wedge along coordinate v is 
supressed.  This fact causes, as it will be shown, underdosage in 
planning calculations, because the AEF is higher in absolute value 
than it should be. Therefore, we get the impression that the dose 
delivered is correct,  and it  is not totally precise, it is lower than 
optimal.   
In  Fig  2,  pictured,  the  geometrical  steps  to  prove  the  AEF 
approximation  [7].  We  detail  the  mathematical  2D  path 
development proof as follows,

the classical notation of 2D wedge path by Ulmer and Harder is 
given in Fig [1], where  L is distance from edge to central-beam, 
φ  angle  of  beam-divergence,  C distance  from focus  to  wedge 
plane, and F distance from focus to dose-delivery zone.

Fig 1.-Classical  2D notation for wedge-path integral  exponential 
factor.In  Fig  3  it  is  sketched  the  error  that  is  taken  using  this 
approximation and in Eq (7.5)  the recent  solution for this exact 
path measurement is given in 3D. Parameters are included in Eq 
(7.1).As said, u,v are beam output size coordinates,z depth,L half 
wedge length,c output  collimator-wedge surface distance,F total 
filter length,α wedge angle,φ beam/beamlet divergence angle.The 
constant µw is tabulated for different LINAC Photon-Energies.

Now we sketch in Fig 2 the calculations that result in exponential 
factor (AEF) of Eq 8.That is, a nonlinear function, 
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Eq (7.1)

Fig 2.-basic  Geometrical-mathematical  demonstration sketch for 
Eq 7.1.

The mathematical-geometrical analysis for getting Eq 7.1 , setting 
basic trigonometric principles, reads,

Eqs (7.2)

to continue with distance decomposition, it is necessary to carry 
out  a  series  of  trigonometric  calculations  rather  long,  but 
convenient for future improved approximations in 3D,note that in 
this contribution we develop the method for the broad part of the 
wedge,and similar  proof  is  applicable  for  the thin  part  in future 
contributions,

Eqs (7.3)

and the final stage is to develop, simplify, and sum part (1) and 
part (2),

Eqs (7.4)

which is the numerical value of the exponential of Eqs 7.1 and 8, 
and  has  to  be  multiplied  by  the  attenuation  coefficient  of  the 
wedge material, μw  .
Therefore, the 2D approximation for wedge beam-path has been 
proven.  However, it is mathematically convenient to show why a 
3D calculation [Refs, 2,5], is demanding to improve the planning 
system  software  and  avoid  virtual  underdosage.  In  Fig  3  it  is 
sketched  the  difference  between  the  2D and  3d approximation 
with a graphical  idea of the error.  As it  was shown in previous 
contributions, the 3D path D, through the wedge reads,

Eq (7.5)
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Fig 3.-Graphical difference/error-path when using 2D pproximation 
compared  to  3D  determination.  If  we  take  always  the  AEF 
approximation of Eq (7.1), in the sagittal plane, there is an error 
for less magnitude (blue brackett) in the path-distance through the 
wedge.

4.-METHODS/MODEL ALGORITHM/SIMULATIONS

The geometrical design of 1-step and 2-step conformal wedges is 
not  complicated  because  it  corresponds  to  basic  irregular 
polyhedral  design.  In  addition,  we  used  trigonometrical 
calculations to determine the δ angle to avoid double attenuation 
effect in 3-steps conformal wedges.
The dose integral formula, when using wedges (Eqs [8,9]), has an 
additional AEF (Eq [8]) that gives the attenuation caused by the 
wedge alloy.  This exponential  modulates the kernel of the dose 
(the triple Gaussian in this AAA algorithm).In this way,to avoid hot 
spots at  the borders of  the tumor is better  got with a conformal 
wedge; because it is possible to use a broader part at the tumor 
border  (more  attenuation  compared  to  standard  wedges,  less 
dose), joint to a thinner part for the main volume of the tumor (less 
attenuation  compared  to  standard  wedges).  It  is  intended  to 
explain sharply this point  by using the  Superposition Principle 
for  Radiation  Dose in  Figure  (3).  We used  the  classical  AAA 
Radiotherapy Dose Distribution for Pencil Beam Model (water),so-
called  Anisothropic  Analytic  Algorithm,  as  previously  [1,2,4]. 
Simulations  are  made  taking  the  AEF  that  multiplies  the 
convolution  integrand part  that  corresponds  to the generic  AAA 
Dose-Delivery Integral Equation (8) [4]. Therefore, it is possible to 
extrapolate/hypothesize the theoretical results for the comparison 
of the dose distribution at  a depth z in the x direction (internal-
external,anatomically speaking), from the center of tumor towards 
the peripherical region (Fig 7.1,12). The center is less attenuated 
by the AEF, and the border is more attenuated by the AEF, and 
this,  mathematically,  will  occur  also  with  the  dose  distribution 
(Superposition  Principle).  The  AEF  in  2D  (we  denote  2D, 
according  to  [2])  formula,  which  modifies  Photon-Fluence 
Distribution, reads [7],

Eq (8)

where u,v are beam output size coordinates,z depth,L half wedge 

length,c output  collimator-wedge  surface  distance,F total  filter 
length,α wedge  angle,φ beam/beamlet  divergence  angle.The 
constant  µw is  tabulated  [4],for  different  LINAC  Photon-
Energies.This Photon-Fluence,for wedges use,is implemented into 
the AAA Dose delivery Fundamental Formula (primary photons in 
water) as follows,

Eq (9)

where I(z) is Beam Intensity,ck and  σk are constants  tabulated 
through optimization [4], and u,v,are output collimator coordinates. 
According to all this,the Mathematical Model Algorithm is,

Eq (10)

The functions  fK correspond to the defined function  f in [Eq (1)
].And  we  have  divided  the  wedge  surface  in  [1,K]  intervals 
corresponding to every step, the total length of the wedge is 2L. 
With  this  formulation,  it  is  mathematically  possible  to  set  a 
Nonlinear  Multi-Objective  Function  to  optimize  the  given 
parameters of the Conformal Wedge in Eq (10), using Eqs (8,9
).Tikhonov Regularization2 with penalty and smooth term functions 
is applied in this nonlinear programming. This formulation  will be 
developed/presented in subsequent publications. In consequence, 
a  series  of  AEF  values  related  to  u  coordinate  distribution 
programs and graphics have been done. Simulation  data is:field 
size  30x30cm2,18MEV LINAC Photon-Energy,depth  z=8cm,  see 
[Fig 2].     
   

4.-EXACT GEOMETRICAL METHOD FOR LA 
DETERMINATION

In  Figs  [4,5]  we  detail  the  geometrical  method  for  LA  exact 
calculation.  Standard  wedge  dimensions  from ref  7,  a,b,c.  This 
approach  constitutes  an  improvement  related  to  previous 
approximations [refs], based on two main points. The real physical 
shape of the LINAC beam is approximately an elliptic cone, not a 
circular one as in [refs 3,3.1], caused by the rectangular geometry 
of the collimator window. Besides, before reaching the wedge, the 
beam  has  also  interact/be  shaped  by  jaws,  flattering  filter, 
ionization chamber,  multileaf  collimator  (if  used),  and eventually 
dynamics  wedges.  The  use  of  divergent-cutting  planes  draw  a 
simple intersection-polygon over the wedge surface, which is the 
mathematically exact border for LA. We start with the plane PAB 
[Figs 4,5], so the line PB, symmetric to PA,

2 Tikhonov  regularization,  originally  developed  with  a  Sobolev  Norm 
(Sobolev Spaces),  constitutes the base of  the nonlinear optimization 
with  least-squares  for  the  mathematical/computational  framework  of 
this  article.  Tikhonov  Regularization  Theory  sets  the  mathematical 
framework  of  modern  optimization,  complemented  by  a  series  of 
additional remarkable researchers.
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Eqs (11)]

Now for the line  PC {Fig],

Eqs [11.1]

we detail the intersection points at z=c by lines PB and PC

Eqs (12)

the points of  the base, [Figs 4,5],  AB and vector  XPC   draw the 
exact emerging border for the wedge [Figs 4,5]. The plane PBC 
contains the inferior border BM of the wedge.  Furthermore, this 
PBC plane intersects with a line at z=0, setting, [Figs 3,4], the LA 
line complementary with the intersecting line of the plane PBA at 
z=0, [Figs 3,4].
Then we get at the wedge surface , [Figs 4,5], the polygon whose 
interior should restrain/include the radiation beam in order not to 
go over the Limit angle. If this condition holds, the beam/beamlets 
will not emerge from the lateral wedge walls [Figs 4,5]. The limiting 
points of this polygon,[Figs 4,5], are,

 L 1 =  ( a/2[(P/(P+c)] , b/2 [[(P/(P+c)] , 0 );

 L 2 =  ( a/2[(P/(P+c)] , (-b/2) [[(P/(P+c)] , 0 );

 L 3 =  ( (-a/2) , b/2 , 0 );

 L 4 =  ( a/2 ,(-b/2) , 0 );

Eqs (13)

In  Fig  5,the  notation  of   L has  been  changed  by  S letter.The 
elliptical section [Figs 4,5] of the beam cone should be within this 
region.  It  will  define  an  elipse  into  these  limits.   An  initial 
approximation for this curve is,

Eqs (14)

Note that the last equation opens an inverse determination of the 
collimator output distance, P, related to the Limit Angle, θL.. That 

is,  we can  select  an  appropriate   Limit  Angle  θL., and  get  the 

optimal collimator output distance P. Such as,

Eq (15)

The optimal  ellipse  equation  for  LA conditions  within  this  Limit 
Polygon  (Figs  4,5),  can  be  determined  both  with  numerical 
methods  and analytic  geometry,  and constitutes  matter  of  next 
contributions.

Fig  4.-Exact  Geometrical  Sketch  for  LA,  superior  and  inferior 
wedge  planes.  Note  the  difference  between  the  superior  and 
inferior  plane  and  the  limits  of  the  polygons.Geometrical 
calculations  are  carried  out  with  basic  analytical  geometry  and 
algebraic geometry. For conformal wedges the method is similar, 
but  we  divided  into  each  conformal  wedge  step.  In  new 
contributions  the  conformal  wedge  geometry  mathematical 
development will be sketched and a series of equations for this 
special medical device [Casesnoves,2005]  sharply explained.
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Fig 5.-Sharp geometrical-polygon sketch for circumscribed optimal 
ellipse linked mathematically to exact limit angle. Eqs (14). Note 
that  for  a  square  collimator-window or  MLC rectangular-square 
geometry the technique is the same.  

5.-RESULTS/COMPUTATIONAL SOFTWARE 

In Figures 6.1 and 6.2 we show a basic geometrical design of a 
conformal wedge. Fig 6.1 presents a 1-step 2D conformal wedge, 
which  does  not  have  any  double-attenuation  design  problem. 
Figure 6.2 details a 2-step 2D conformal wedge geometric design, 
that  shows  how  the  double-attenuation  could  become  a  dose 
engineering-precision  difficulty.  Double  attenuation  occurs  when 
any  divergent  beamlet  can  collide  with  the  notch  of  the  step-
discontinuity  after  emerging  from  the  wedge-interior.  This 
phenomenon cause an additional attenuation of the beamlet, and 
if the threshold between two consecutive steps is high, the double 
attenuation can be a source of error.  According to Mathematical 
Formulation  which  is  presented  in  Eqs1,2  (Trigonometry 
calculations),Double-attenuation angle δ Fig (5) is,

Eq (11)

where  L is  the  half  lateral  length  (standard)  of  the  wedge,and 
factor m is defined by trigonometry with the distance from the step 
corner notch to the lateral  wedge side,  S is the distance to the 
wedge  surface  from  step  notch  corner,  and  c  [Ref  7] is  the 
distance from collimator output to wedge surface.
Simulations  of  lateral  2D  AEF  magnitude  distribution  for  45º 
wedge are presented in Fig 7.1 related to u coordinate.  In that 
pic,it  is proven the adaptation of  the AEF on the tumor contour 
threshold.The simulation was done with a standard wedge of 45º 
(standard  size,  [2])  modified  to  a  conformal  one,  right  broad 
part.The  decrease  of  the  AEF  curves  while  wedge  thickness 
increase, causes a dose-reduction towards the tumor edge since 
AEF multiplies the integrand triple-Gaussian principal convolution 
term.  We  explain  Figs  7.1,8  in  other  words.  The  wedge-
exponential factor (AEF) of the graph, multiplies within the integral 
the dose-convolution factor. The integral can be considered as a 
summatory  of  these  multiplications.  Therefore,  if  there  is  a 
threshold  in  the  magnitude  of  the  exponential  (AEF),  it  is  also 
projected  by  multiplication  to  the  total  dose.  Software  for 
simulations was  carried out with specific Freemat 4.2 (Samit Basu 
GNU General  Public  License)  subroutines.The  matrices  for  the 
curves construction had to be modified/transposed sometimes  to 
carry out mathematical operations. Basically, we have to design 

the simulation program setting vectors for each step interval with 
the corresponding values of u coordinate and φ angles. After that, 
we use 2D graphics subroutines to implement  the AEF formula 
with these vectors. Some special arrangements have to be carried 
out to join the curves together in one graph. The subroutines that 
were used were, among others, handle-based graphics and plot 
function. 

6.-FORMER BEAM LIMIT DIVERGENCE ANGLE,  
CONCEPT, GEOMETRY, AND FORMULATION

In  previous  contributions  [3,3.1,4],  the  LA was  mathematically 
defined  and  developed  for  wedges.  We  detail  here  the  main 
formulas and one sketch of LA, together with a picture of the so-
called conformal wedge. Given a fixed collimator output to wedge 
surface  distance,  LA  is  defined  as  the  maximum  angle  of 
divergence that  can be reached by  the  whole   radiation  beam 
without  emerging  at  any  point  of  lateral  walls  of  the  wedge. 
Photon-Beam divergence angles values vary around 20 degrees. 
The Beam minimum divergence depends on the collimator design 
quality, and in general of the precision engineering manufacturing 
of the LINACs. LA is useful because of several reasons. Avoids 
hot  spots,  sub-optimal  dose  delivery,  planning  system  software 
propagation errors, overdose at OARS, and repetition of planning 
work caused by sub-optimal dose delivery calculations. The LA for 
a  conformal  wedge  calculation  presents  some  additional 
difficulties. However, the primary approximation is to take as LA for 
a  CWF  he  value  of  the  deepest  step  of  the  wedge.  Main 
formulation for LA in standard wedges is for the principal pencil 
beam [Ref 9],

with     

Eqs (12)

where

from [Ref 9] , and        

Eqs (13)

where P is the distance between the collimator output and wedge 
surface  (perpendicular,  [Ref  9]),  r  is  the  vector  defined  by 
coordinates u1 and u2 (wedge surface as in Figs (6.1, 6.2), alpha is 
the  wedge  angle,  and  theta  is  the  beamlet  divergence  angle. 
These limiting geodesics are sketched in red in Fig (2.1). We have 
used the constraint for inferior geodesic [Ref 9] and Figs (1.1,1.2), 

Eq (14)

Therefore,  to  make  sure  the  components  of  the  decomposed 
beam Fig   have a  correct  output  point  the  following  conditions 
should hold 

Eqs (15)  

where a is the half-side of transverse maximum length of wedge, 
and c is collimator-wedge surface distance. Angle decomposition 
is sketched in Fig 9. 
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7.-DISCUSSION AND CONCLUSIONS WITH CLINICAL-
BIOENINEERING APPLICATIONS

The  principal  result   in  Figs  shows  geometrical  formulation  for 
exact  LA.  Elliptic  cone  and  elliptic  sections  over  upper-wedge 
surface.The  method  can  be  considered  improved  compared  to 
previous contributions and applicable both on circular and elliptical 
radiation  beam  geometry.Standard/Conformal  wedges 
manufacturing should be made for LINAC manufacturing holding 
these mathematical-geometrical  constraints  to  avoid undesirable 
beam/beamlets  emerging  from  lateral  wedge  sides.  Clinical-
Bioengineering  applications go beyond only wedge filters,  since 
MLC  can  be  used  combined  with  wedges  for  optimal  dose 
distribution/delivery.  All these formulas/algorithms are suitable to 
be  implemented  in  planning-system  software  for  Clinical 
Inverse/Forward Treatment Planning Optimization. 
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Figures  6.1,6.2  -Upper,basic  geometrical  design  of  Conformal 
Wedge Filter (1 and 2 notchs)and Angle-Step Geometry. Lower, 1-
step Conformal wedge showing the principal  beam (one pencil-
beam) and a divergent pencil-beam.

Figures 7 and 7.1-Upper, Simulation for Standard 45º Wedge. In 
the graphics the shape of the wedge is inserted in order to check 
the attenuation threshold created by the wedge step. Lower, the 
main  concept  of  approximated  Limit  angle  that  yields  to 
trigonometric calculations presented in previous publications.
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Figure 8.-An sketch of  the Superposition Principle for Standard 
Wedge
(upper),and for Conformal Wedge Conversion (lower). 

Figure 9.-An sketch of the decomposed beam for LA calculations 
[refs 4,6,7].

Figure  10.-An  sketch  of  the  double-attenuation  geometry 
calculations, related to Eq (11). L is in Eq (11) the half-length of 
the total transversal length of the wedge. 

Figure 11.-A simple sketch of the dose distribution of a conformal 
wedge  for  a  lung  tumor  (Google  Images  with  paper  author's 
composition/design).
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Figure 12.-A simulation graphics to show the enhanced threshold 
of the AEF.  Basically,  we have to design the simulation program 
setting  vectors  for  each  step  interval  with  the  corresponding 
values  of  u  coordinate  and  φ  angles.  After  that,  we  use  2D 
graphics  subroutines  to  implement  the  AEF formula  with  these 
vectors. Some special arrangements have to be carried out to join 
the curves together in one graph. 

Fig  13.-  From  [ref  6]  Sketch  of  a  bixel  (a  quasi-
differential  rectangular  prism  (a  pyramid),  whose 
apex is at collimator output) which contains a Pencil-
beam whose path  goes through the wedge with a 
divergence  angle  θ.  A Voxel  is  a quasi-differential 
portion of volume almost parallelepipedic). We detail 
complementary  explanations  about  the 
Superposition-Convolution  method  to  introduce  the 
mathematical  concept.  Erratum:  the  limits  of  the 
Convolution Integral for the bixel are not infinity and 
minus infinity. The limits are the values of u1' and u2' 
for the pixel of the wedge surface that correspond to 
the  selected  bixel.  To  carry  out  calculations  for  a 
complete  Treatment  Planning  Optimization  and 
Computational  Software  Development,  it  is 
necessary to also include the rotation angles of the 
gantry  and  the  couch.  This  done by implementing 
the corresponding matrices of rotations, and taking 
into account the Isocentre Position. This matter goes 
beyond the scope of this Technical Paper, which is 
focused only on the wedges Pencil-Beam pathway. 
Note  also  that  this  Superposition-Convolution 
Integral Model corresponds to the initial stages of the 
AAA  algorithm  development  in  water  (constant 
density). It is not too complicated to implement these 
calculations  on the  recent  AAA Formulas fitted  for 
heterogeneus tissues with the necessary correction 
factors.Erratum:in convolution formula z must be z'.
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